Un número irracional es un número que no se puede escribir en fracción - el decimal sigue para siempre sin repetirse.
Ejemplo: Pi es un número irracional. El valor de Pi es
3,1415926535897932384626433832795 (y más...)
Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi.
Números como 22/7 = 3,1428571428571... se acercan pero no son correctos.
| Se llama irracional porque no se puede escribir en forma de razón (o fracción), ¡no porque esté loco! |
Racional o irracional
Pero si un número se puede escribir en forma de fracción se le llama número racional:
Ejemplo: 9,5 se puede escribir en forma de fracción así
19/2 = 9,5
así que no es irracional (es un número racional)
Aquí tienes más ejemplos:
| Números | En fracción | ¿Racional o irracional? |
|---|---|---|
| 5 | 5/1 | Racional |
| 1,75 | 7/4 | Racional |
| .001 | 1/1000 | Racional |
| √2 (raíz cuadrada de 2) | ? | ¡Irracional! |
Ejemplo: ¿La raíz cuadrada de 2 es un número irracional?
Mi calculadora dice que la raíz de 2 es 1,4142135623730950488016887242097, ¡pero eso no es todo! De hecho sigue indefinidamente, sin que los números se repitan.
No se puede escribir una fracción que sea igual a la raíz de 2.Así que la raíz de 2 es un número irracional
Números irracionales famosos
![]() |
Pi es un número irracional famoso. Se han calculado más de un millón de cifras decimales y sigue sin repetirse. Los primeros son estos:
3,1415926535897932384626433832795 (y sigue...)
| ||||
![]() |
El número e (el número de Euler) es otro número irracional famoso. Se han calculado muchas cifras decimales de e sin encontrar ningún patrón. Los primeros decimales son:
2,7182818284590452353602874713527 (y sigue...)
| ||||
![]() |
La razón de oro es un número irracional. Sus primeros dígitos son:
1,61803398874989484820... (y más...)
| ||||
![]() |
Muchas raíces cuadradas, cúbicas, etc. también son irracionales. Ejemplos:
Pero √4 = 2, y √9 = 3, así que no todas las raíces son irracionales. |
Más información en el siguiente vídeo
Un poco de historia de los números irracionales
Los irracionales y el infinito




No hay comentarios:
Publicar un comentario